Announcement
Collapse
No announcement yet.
Physicists find "God Particle"?
Collapse
X
-
-
BOOM, bitches.
Physicists say they have found long-sought Higgs boson
Published March 14, 2013 | Associated Press
The search is all but over for a subatomic particle that is a crucial building block of the universe.
Physicists announced Thursday they believe they have discovered the subatomic particle predicted nearly a half-century ago, which will go a long way toward explaining what gives electrons and all matter in the universe size and shape.
The elusive particle, called a Higgs boson, was predicted in 1964 to help fill in our understanding of the creation of the universe, which many theorize occurred in a massive explosion known as the Big Bang. The particle was named for Peter Higgs, one of the physicists who proposed its existence, but it later became popularly known as the "God particle."
The discovery would be a strong contender for the Nobel Prize. Last July, scientists at the European Organization for Nuclear Research, or CERN, announced finding a particle they described as Higgs-like, but they stopped short of saying conclusively that it was the same particle or was some version of it.
Scientists have now finished going through the entire set of data.
"The preliminary results with the full 2012 data set are magnificent and to me it is clear that we are dealing with a Higgs boson, though we still have a long way to go to know what kind of Higgs boson it is," said Joe Incandela, a physicist who heads one of the two main teams at CERN, each involving several thousand scientists.
Whether or not it is a Higgs boson is demonstrated by how it interacts with other particles and its quantum properties, CERN said in the statement. After checking, scientists said the data "strongly indicates that it is a Higgs boson."
The results were announced in a statement by the Geneva-based CERN and released at a physics conference in the Italian Alps.
CERN's atom smasher, the $10 billion Large Hadron Collider that lies beneath the Swiss-French border, has been creating high-energy collisions of protons to investigate how the universe came to be the way it is.
The particle's existence helps confirm the theory that objects gain their size and shape when particles interact in an energy field with a key particle, the Higgs boson. The more they attract, so the theory goes, the bigger their mass will be.
Leave a comment:
-
-
late to the thread.
I was recently thinking of the project that was being built under Ellis county, where I was growing up, and decided to re-read this thread.
Originally posted by mustangguy289 View PostDoes anyone else see the irony in this?
Investing billion of dollars to "hunt" for something that only exists for a billionth of a billionth of a billionth second?
Leave a comment:
-
Stephen Hawking: "Higgs discovery has lost me $100".
Leave a comment:
-
Higgs!
July 4th, 2012 3:10 AM
by Phil Plait
Scientists using the Large Hadron Collider in Geneva have announced the discovery of a new subatomic particle to very high confidence that is consistent with what we expect the Higgs particle to look like.
Ye. GADS.
This plot shows the discovery as seen in one of the LHC detectors. Hang tight, and I’ll explain it!
OK, the quick version. The Higgs particle is extremely important, because the Standard Model of particle physics – the basic idea of how all particles behave – predicts it exists and is what (indirectly) gives many other particles mass. In other words, the reason electrons, protons, and neutrons have mass is because of this Higgs beastie. Last year, the Guardian put up a nice article explaining this. A more technical discussion is on Discover Magazine’s Cosmic Variance blog from 2007. Sean Carroll has been live-blogging the announcement, and has lots of good info as well.
This particle is very hard to detect, because it doesn’t live long. Once it forms it decays in a burst of energy and other particles (think of them as shrapnel) extremely rapidly. The only way to make them is to smash other particles together at incredibly high energies, and look at the resulting collisions. If the Higgs exists, then it will decay and give off a characteristic bit of energy. The problem is, lots of things give off that much energy, so you have to see the Higgs signal on top of all that noise.
So, you have to collide particles over and over again, countless times, to build up that tiny signal from the Higgs decay. The more you do it, the bigger the signal gets, and the more confident you can be that the detection is real. I described all this in detail last December, when preliminary results from LHC were announced. I strongly urge you to read that first!
Back now? Good. So last year, an excess signal was seen at an energy around 125 GeV – that’s a unit of energy physicists use, and it also indicates the mass of the particle decaying. Because energy and mass are interchangeable at some level, detecting the energy emitted when a particle decays tells you its mass.
A proton has a mass of about 1 GeV, so this excess found is about 125 times that much. Last year’s results were tantalizing, but the strength of the signal only led to a confidence level of about 90% that it was real. Nice, but not enough to claim a discovery.
Today that all changed. Two different detectors at the LHC both independently found a strong signal between 125 and 126 GeV at about the 5 sigma level – that means they can claim a 99.9999% confidence this signal is real! This means they found a previously undiscovered particle which, as it happens, is within the range of mass the Standard Model predicts for the Higgs particle! That’s what that plot above shows: a bump in the energies detected, and it’s seen so strongly that it can be called a discovery.
That’s huge.
Now technically, that’s all the physicists can say: the particle is definitely there. But is it the Higgs? Well, to be fair, they can’t actually say that. But if it walks like a Higgs, looks like a Higgs, and quacks like a Higgs… yeah.
So there you have it. A new fundamental particle has been found, and if it’s the Higgs – which it really really really looks like it is – is the first step to our truly understanding such basic concepts as mass and gravity in the Universe. It’s technical, and it’s complicated, and it’s the result of a vast amount of time, money, and effort by thousands upon thousands of people… but it’s real.
And it’s only the first step. There’s much work to be done. But oh, what a step. The Universe has once again done something wonderful — let us peek behind the curtain and get a glimpse of its inner workings.
Never forget this either: we humans did this. The discovery of this new particle, and the vast potential it has, was all because we’re curious. This huge machine, the LHC, was built solely because we wanted to find things out, and some people had the vision to fund it and build it. When we wish to explore, when we wish to see what’s over the next hill, wonders unfold before us.
All we have to do is want it enough.
Leave a comment:
-
Physicists from the Large Hadron Collider (LHC) presented strong evidence for the existence of the Higgs boson, often called the "God particle."
New Particle at World's Largest Atom Smasher is Likely Higgs Boson
Clara Moskowitz, LiveScience senior writerDate: 04 July 2012 Time: 04:42 AM
Physicists are more than 99 percent sure that they've found a new elementary particle that is likely the long-sought Higgs boson.
Evidence for the new particle was reported today (July 4) by scientists from the world's largest atom smasher, the Large Hadron Collider in Switzerland. Researchers reported they'd seen a particle weighing roughly 125 times the mass of the proton, with a level of certainty that all but seals the deal it's the Higgs boson.
"This is indeed a new particle. We know it must be a boson and it’s the heaviest boson ever found," Joe Incandela, spokesperson for LHC's CMS experiment, said in a statement. "The implications are very significant and it is precisely for this reason that we must be extremely diligent in all of our studies and cross-checks."
Leave a comment:
-
Originally posted by racrguy View PostBook name pl0x?
In Pursuit of the Unknown: 17 Equations That Changed the World - Ian Stewart
Last edited by Strychnine; 07-03-2012, 04:41 PM.
Leave a comment:
Leave a comment: